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Langevin equations and surface growth

G. Costanza
Departamento de Fı´sica, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina

~Received 9 January 1997!

The three approaches usually used to study surface growth are~i! master equation,~ii ! stochastic Langevin
equation, and~iii ! microscopic models. All of them give the same scaling exponents. Recently, Vvedensky
et al. @Phys. Rev. E48, 852~1993!# derived a stochastic Langevin equation from a master equation of the birth
and death type, for the epitaxial growth, demonstrating the equivalence of both approaches. In this paper a
stochastic Langevin equation is derived from a discrete model. The results are the same as those obtained by
Vvedenskyet al. demonstrating that the three approaches are equivalent. As a nontrivial example, our proce-
dure is used to derive the Kardar-Parisi-Zhang~KPZ! equation from the ballistic deposition process. This
model with vacancies and overhangs is very difficult to handle, due to the algebraic complications that arise
when the master equation approach is used.@S1063-651X~97!11905-5#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

In recent years there has been a growing interest in
study of surface growth. The comprehension of this pheno
enon plays an important role in understanding and cont
ling many interesting interface processes@1#, such as colloi-
dal and porous aggregates@2–4#, vapor deposition@5–7#,
crystal growth, molecular beam epitaxy~MBE! @8#, etc. In
the laboratory, these processes can be made to occur in m
different ways and a complete understanding is still
available.

The formation of interfaces and surfaces is influenced
a large number of factors, and it is almost impossible
distinguish all of them. Several studies show that some pr
erties of growing surfaces can be analyzed and describe
simple microscopical rules. Many models can afford to
elementary, because the phenomena being modeled
themselves rather simple, i.e., ‘‘island formation’’ in MB
can be modeled successfully using elementary compute
gorithms.

Nevertheless, the classical procedure to describe such
cesses from the mathematical point of view consists of
following: ~i! a master equation to determine the joint pro
ability P(h,t) that the surface profile has a configurationh at
time t @whereh5(h1 ,h2 ,...,hN) is the set of different sur-
face sites height#; ~ii ! a stochastic equation of the Langev
type to determineh(xi ,t), which describes the heighth in
the positionxi at time t; ~iii ! the discrete model, which de
scribes through specific rules the growth of the hei
hi(tn) of a given sitei in the time steptn . Given a model for
the description of a growing process the three mentio
methods give the same scaling exponent; the roughening
ponenta, the growth exponentb, and the dynamic exponen
z5a/b.

Vvedenskyet al. @9# have reported an analytical deriva
tion of the Langevin equation~LE! of motion for the surface
of a solid growing under typical epitaxial conditions. By u
ing the master equation for the growing process, they
tained the Langevin equation through the evaluation of
first moment of the transition rateW(h,h8). Both equations
belong to the same universality class and as a consequ
551063-651X/97/55~6!/6501~6!/$10.00
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they have the same scaling exponent. While in principle
method described by the authors can be applied to the m
general case~i.e., surface growth with vacancies and ove
hangs!, the algebraic complications that arise are daunti
as they mention in their paper@9#. Due to this fact, it is
interesting and stimulating to search for alternative a
proaches to describe the growing process.

In this paper, we will use a microscopic approach to o
tain the Langevin equation for the motion of the surfa
profile in a growing process. The outline of the rest of th
paper is as follows; in Sec. II A, we describe the procedure
obtain the LE from elementary rules for the discrete D
Sarma–Tamborenea growth model@10–12# ~without diffu-
sion! obtaining the corresponding Edwards-Wilkinson@13#
equation and in Sec. II B the ballistic deposition model
analyzed and the corresponding Kardar-Parisi-Zhang@14#
equation is obtained. Finally, in Sec. III we give a brief sum
mary and conclusion of the present investigation.

II. DISCRETE MODELS AND LANGEVIN-TYPE
EQUATIONS

Our procedure to obtain the Langevin equation for t
motion of the surface profile is based on the elementary
croscopic growth rules for the height of a given site. In t
following we consider a one-dimensional lattice withN sites
with periodic boundary conditions. The height of a given s
i , hi(tn), is a function of the indexi and timetn . One can
specify the procedure as follows:

~i! A dummy indexj is chosen at random fromN integer
numbers.~ii ! The height of a sitei at time tn115tn1t0
~heret0 is the elemental time step between two success
depositions in any site of the lattice! is given by

hi~ tn11!5Rj„$hi~ tn!%…, ~1!

whereRj„$hi(tn)%… gives the growing rules for the height o
the sitei and depends on the value of the dummy indexj .
The way to obtain such dependence is specified by the r
a priori, and in general can be dependent on the complete
of heights$hi(tn)% at time tn before deposition.
6501 © 1997 The American Physical Society



es

iv

.

e

d-

si-
b
-
In
th

-

e

is

q.

ng

o
ns

the

ar-

6502 55G. COSTANZA
Let us define now the time interval between two succ
sive depositions on sitei as

t i ,m5t1dt i ,m , ~2!

where t is the mean time interval between two success
depositions on sitei anddt i ,m is the random deviation from
the mean valuet. With this consideration we can write Eq
~1! for time t1t i ,m as

hi~ t1t i ,m!5Rj„$hi~ t1t i ,m2t0!%…, ~3!

wheret5tm is the time of the previous deposition~see Fig.
1!.

In order to illustrate the derivation of the LE from th
growth rules given in Eq.~3!, in the next section we will
obtain the rules for two well-known growth models:~1! the
Das Sarma–Tamborenea models~without diffusion! and ~2!
the ballistic deposition@1# and consequently the correspon
ing Langevin equations.

A. Das Sarma–Tamborenea model„without diffusion …

The first nonequilibrium growth models including depo
tion, relaxation, and surface diffusion were introduced
Family @10#, Wolf and Villain @11#, Das Sarma and Tambo
renea@12#, etc., in order to mimic real growth processes.
this subsection we apply our procedure to obtain

FIG. 1. A portion of thehi(t) plot. It is easy to see that, due t
the fact thathi(t) is constant between two successive depositio
hi(tm1t i ,m2t0)5hi(tm).
-

e

y

e

Edwards-Wilkinson@13# equation from the elementary relax
ation mechanisms of the Das Sarma–Tamborenea~DST!
model ~without diffusion!. Before proceeding to define th
elementary rules, let us define the height differenceHl

k be-
tween two sitesk and l at time t1t i ,n2t0 as

Hl
k5hk~ t1t i ,n2t0!2hl~ t1t i ,n2t0!. ~4!

By expandingHl
k in a Taylor series aboutt and retaining the

first term, we obtain

Hl
k5hk~ t !2hl~ t !1O~t i ,n2t0!, ~5!

which is an approximation that will be used throughout th
paper.

Now, we have to derive explicitly the rules given in E
~3! for the DST model. The growing rules for the sitei ~see
Fig. 2! can be expressed as conditionals in the followi
way:

hi~ t1t i ,n!5hi~ t !1r 11r 21r 31r 41r 5 , ~6!

where the elementary rulesr 1 ,...,r 5 can be written as

,

FIG. 2. The five graphical representations corresponding to
rules r 1 ,...,r 5 , indicating all the possible situations of sitei
growth. The upper arrows indicate the randomly chosen sitej and
the lower arrows indicate the possible sites where the falling p
ticles relax.
r 15H a0 if j5 i
if jÞ i

and
or

Hi
i21>0 and Hi

i11>0

Hi
i21,0 or Hi

i11.0,
~7!

r 25H a0 if j5 i11 and Hi
i11.0

if jÞ i11 or Hi
i11<0

and Hi11
i12>0

or Hi11
i12,0,

~8!

r 35H a/2 if
0 if

j5 i11 and Hi
i11.0 and Hi11

i12,0

jÞ i11 or Hi
i11<0 or Hi11

i12<0,
~9!

r 45H a0 if j5 i21
if jÞ i21

and
or

Hi21
i22>0

Hi21
i22,0

and
or

Hi
i21.0

Hi
i21<0,

~10!



55 6503LANGEVIN EQUATIONS AND SURFACE GROWTH
r 55H a/20 if j5 i21
if jÞ i21

and
or

Hi22
i21.0

Hi22
i21<0

and
or

Hi
i21.0

Hi
i21<0,

~11!

andhi(t1t i ,n2t0)5hi(t) was used~see Fig. 1!. The equivalent analytic expression of Eq.~6! is given by

hi~ t1t i ,n!5hi~ t !1a@d i , ju~Hi
i21!u~Hi

i11!1d i11,ju* ~Hi
i11!u~Hi11

i12!1 1
2d i11,ju* ~Hi

i11!u* ~Hi12
i11!

1d i21,ju~Hi21
i22!u* ~Hi

i21!1 1
2d i21,ju* ~Hi22

i21!u* ~Hi
i21!# ~12!
n

th

g

a

d

n

whereu(x) is the step function andu* (x)512u(2x). The
products in each terms of Eq.~12! are the analytic expressio
of the corresponding conditionals given in Eqs.~7–11!. The
factor 1

2 in the third and fifth terms of Eq.~12! is the prob-
ability that a particle deposits on sitei when the dummy
random indexj takes the valuei11 or i21, respectively
~see rulesr 3 and r 5 in Fig. 2!.

In order to compare the results of this subsection with
results of Ref.@9# let us write Eq.~3! as

hi~ t1t i ,n!5hi~ t !1a~d i , jwi1d i11,jwi111d i21 ,wi21!,
~13!

where

wi5u~Hi
i21!u~Hi

i11!, ~14!

wi115u* ~Hi
i11!u~Hi11

i12!1 1
2u* ~Hi

i11!u* ~Hi12
i11!,

~15!

and

wi215u* ~Hi
i21!u~Hi21

i22!1 1
2u* ~Hi

i21!u* ~Hi22
i21!.

~16!

Developinghi(t1t i ,n) in a Taylor series and retainin
the first two terms, Eq.~8! can be written as

dhi~ t !

dt
t i ,n5a~d i , jwi1d i11,jwi111d i21,jwi21!. ~17!

Using the results of Appendix A for the development in
Taylor series of the Kronecker symbols,

d i , j511h i~xj !1h i~xi !, ~18!

d i11,j511h i11~xj !1h i11~xi11!, ~19!

d i21,j511h i21~xj !1h i21~xi21! ~20!

and the expression oft i ,n given in Eq.~2!, we obtain

dhi~ t !

dt
5
a

t
~wi1wi111wi21!1h. ~21!

The sum of the remainder termsh can be written as

h5h01hs1hd , ~22!

where

h052
dhi~ t !

dt

dt i ,n
t

, ~23!
e

hs5
h i~xj !wi1h i11~xj !wi111h i21~xj !wi21

t
. ~24!

and

hd5
h i~xi !wi1h i11~xi11!wi111h i21~xi21!wi21

t
.

~25!

The first term on the right-hand side of Eq.~21! is equal
to the first transition moment given in Eq.~25! in Ref. @9#.

Finally, by using of the results given in Appendix B an
retaining the first few terms, we can write

]h~xi ,t !

]t
5F1n

]2h~xi ,t !

]xi
2 1h, ~26!

where

F5
a

t
~27!

and

n5
2a3A1

t
~28!

This is the well-known Edwards-Wilkinson equation@13#.

B. Ballistic deposition

This model is defined by the following rules, show
graphically in Fig. 3:

hi~ t1t i ,n!5hi~ t !1
r 11r 21r 31r 41r 5

W
, ~29!

where

r 15H a if j5 i and Hi21
i >0 and Hi11

i >0

0 if jÞ i or Hi21
i ,0 or Hi11

i ,0,
~30!

r 25HHi
i11 if j5 i and Hi

i21>0 and Hi21
i11>0

0 if jÞ i or Hi
i21,0 or Hi21

i11,0,
~31!

r 35HHi
i11 if j5 i and Hi

i11.0 and Hi21
i .0

0 if jÞ i or Hi
i11<0 or Hi51

i ,0,
~32!



o

e

nd

in-

si-

stic

the
d
ith
ion
are
and
st a
but
nd
aic

-

6504 55G. COSTANZA
r 45HHi
i21 if j5 i and Hi

i11>0 and Hi11
i21>0

0 if jÞ i or Hi
i11,0 or Hi11

i21,0,
~33!

r 55HHi
i21 if j5 i and Hi

i21.0 and Hi11
i >0

0 if jÞ i or Hi
i21<0 or Hi11

i ,0,
~34!

and

W5u~Hi21
i !u~Hi11

i !1u~Hi21
i !u~Hi21

i11!

1u* ~Hi
i11!u~Hi21

i !1u~Hi
i11!u~Hi11

i21!

1u* ~Hi
i21!u~Hi11

i ! ~35!

is a normalization factor that takes into account the situati
of multiple neighbors as shown in Fig. 3~b!. Again in Eq.
~29! hi(t1t i ,n2t0)5hi(t) was used. In order to separat
the deterministic and the stochastic parts of Eq.~29! let us
write

hi~ t1t i ,n!5hi~ t !1d i , j
~w11w21w3!

W
, ~36!

where

w15au~Hi21
i !u~Hi11

i !, ~37!

w25Hi
i11

„u~Hi
i21!u~Hi21

i11!1u* ~Hi
i11!u~Hi21

i !…,
~38!

and

w35Hi
i21

„u~Hi
i11!u~Hi11

i21!1u* ~Hi
i21!u~Hi11

i !….
~39!

Developinghi(t1t i ,n) in a Taylor series and retaining
the first two terms, Eq.~36! can be written as

dhi~ t !

dt
t i ,m5d i , j

~w11w21w3!

W
. ~40!

FIG. 3. ~a! Growth rules corresponding to Eqs.~30!, ~31!, ~32!,
~33!, and~34!. ~b! Growth rules corresponding to situations of mul
tiple neighbors~two and three!.
n

Expanding the Kronecker symbol as in Appendix A a
t i ,m as in Eq.~2!, Eq. ~18! can be written as

dhi~ t !

dt
5
1

t

~w11w21w3!

W
1h ~41!

andh as in the previous subsection is the sum of the rema
der terms:

h5h01hs1hd , ~42!

where

h052
dhi~ t !

dt

dt i ,n
t

, ~43!

hs5
h i~xj !~w11w21w3!

Wt
, ~44!

and

hd5
h i~xi !~w11w21w3!

Wt
. ~45!

Finally using the results of Appendix B the Kardar-Pari
Zhang equation is

]h~xi ,t !

]t
5F1n

]2h~xi ,t !

]xi
2 1lS ]h~xi ,t !

]xi
D 21h, ~46!

where

F5
a

3t
, ~47!

n5
@12~5/6!aA1#a

2

3t
, ~48!

and

l5
a2A1

t
. ~49!

In Eq. ~46! the nonlinear term appears as the characteri
of the ballistic deposition model as expected.

III. GENERALIZATIONS AND CONCLUSIONS

The possible generalizations of the above method are
inclusion of different rules for deposition, diffusion, etc., an
the generalization to higher dimensions and to lattices w
other symmetries. In conclusion, this method of construct
of the Langevin equations shows that discrete models
completely equivalent to the master equation approach
give the same stochastic Langevin equations. It is not ju
new ’’representation’’ of the surface growth phenomena
a more powerful tool for solving models with vacancies a
overhangs in a relatively simple way avoiding the algebr
complications arising in the master equation approach.
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APPENDIX A

In order to separate the deterministic and the stocha
parts let us write the Kronecker symbold i , j analytically as

d i , j5u~xi2xj !u~2xi1xj !, ~A1!

where xi5 ia and xj5 ja. This way of writing d i , j allows
one to separate the deterministic and the stochastic par
approximating the step functions by an analytic function
in Ref. @9#. Expanding both step functions in a Taylor seri
it is easy to find

u~xi2xj !5u~xi !1D1, ~A2!

u~2xi1xj !5u~2xi !1D2, ~A3!

where

D65 (
n51

`
~6xj !

n

~n!!

]nu~6x!

]xn U
x56xi

. ~A4!

Then Eq.~A1! can be written as

d i , j5u~xi !u~2xi !1h i~xj !, ~A5!

where

h i~xj !5u~xi !D
21u~2xi !D

11D2D1. ~A6!

Developing again both step functions in Eqs.~A2! and~A3!
about zero we have

u~6xi !511D0
6 , ~A7!

where

D0
65 (

n51

`
~6xi !

n

~n!!

]nu~6x!

]xn U
x50

. ~A8!

Finally, introducing Eq.~A7! in Eq. ~A5!

d i , j511h i~xi !1h i~xj !, ~A9!

where

h i~xi !5D0
21D0

11D0
2D0

1. ~A10!

The generalization of Eq.~A9! is straightforward

d i6b, j511h i6b~xi6b!1h i6b~xj ! ~A11!

for any b and the explicit expressions are obtained after
placing everywhere the indexi by (i6b).
de
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APPENDIX B

In order to obtain analytic expressions of the height d
ferences of two sites we define an interpolating funct
h(xi ,t) such that

h~xi ,t !5hi~ t ! for i51,2,...,N. ~B1!

Now the height differences can be written as

Hi
i615h~xi61 ,t !2h~xi ,t ! ~B2!

and

Hi61
i625h~xi62 ,t !2h~xi61 ,t !. ~B3!

Finally, developing in a Taylor series all heights aboutxi it is
easy to write the height differences of the previous equa
as

h~xi61 ,t !2h~xi ,t !56D1,11D2,1 ~B4!

and

h~xi62 ,t !2h~xi61 ,t !56~D1,22D1,1!1~D2,22D2,1!,
~B5!

where

D1,k5 (
n51

`
~ka!2n11

~2n11!!

]2n11h~xi ,t !

]xi
2n11 for k51,2

~B6!

and

D2,k5 (
n51

`
~ka!2n

~2n!!

]2nh~xi ,t !

]xi
2n for k51,2. ~B7!

Using the above developments we proceed to find
Langevin equations of the discrete models.

1. Das Sarma–Tamborenea model„without diffusion …

Let us approximate the step functions by analytic fun
tions as in Ref.@9# and, expanding each one in a Tayl
series, we easily find

wi5112A1D2,11O~A1
2!, ~B8!

wi115A1~D1,11D2,1!1O~A1
2!, ~B9!

and

wi215A1~2D1,11D2,1!1O~A1
2!, ~B10!

whereA1 is the second coefficient of the development a
only the termsO(A1) are retained. The developments of th
height differences given in Appendix A were also use
Finally, collecting together the above results one can be w
ten

wi1wi111wi215114A1D2,11O~A1
2!, ~B11!

which is the deterministic part of the Langevin equation c
responding to the Das Sarma–Tamborenea model.
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2. Ballistic deposition

In the same way that we proceeded in the previous s
section the three terms of the numerator of the determin
part of the ballistic deposition model are

w15a~122A1D2,1!1O~A1
2!, ~B12!

w25D1,11D2,112A1~D1,11D2,1!
21O~A1

2!, ~B13!

and

w352D1,11D2,112A1~2D1,11D2,1!
21O~A1

2!,
~B14!

where again only the termsO(A1) are retained and the de
velopment of the height differences given in Appendix
was also used. Let

~2D1,11D2,1!
25D1,1

2 1O~a3! ~B15!

in the above results. Then the numerator of the determin
part of the Langevin equation for the ballistic depositi
model can be written as
,

vi
b-
ic

ic

w11w21w35a1S 12
aA1
2 D2D2,113A1D1,1

2 1O~A1
2!.

~B16!

In the same way the denominator is

W5312A1D2,11O~A1
2!. ~B16!

Expanding 1/W in a geometric series we finally obtain

1

W
5
1

3
@12 2

3A1D2,11O~A1
2!# ~B17!

and

w11w21w3

W
5
a

3
1S 12

5aA1
6 D2D2,11A1D1,1

2 1O~A1
2!,

~B18!

which is the deterministic part of the ballistic depositio
model.
,
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