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Langevin equations and surface growth

G. Costanza
Departamento de Bica, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
(Received 9 January 1997

The three approaches usually used to study surface growif) anaster equation(ji) stochastic Langevin
equation, andiii) microscopic models. All of them give the same scaling exponents. Recently, Vvedensky
et al.[Phys. Rev. &8, 852(1993] derived a stochastic Langevin equation from a master equation of the birth
and death type, for the epitaxial growth, demonstrating the equivalence of both approaches. In this paper a
stochastic Langevin equation is derived from a discrete model. The results are the same as those obtained by
Vvedenskyet al. demonstrating that the three approaches are equivalent. As a nontrivial example, our proce-
dure is used to derive the Kardar-Parisi-ZhahdPZ) equation from the ballistic deposition process. This
model with vacancies and overhangs is very difficult to handle, due to the algebraic complications that arise
when the master equation approach is u§8d063-651X%97)11905-5

PACS numbegs): 05.40:+j

[. INTRODUCTION they have the same scaling exponent. While in principle the
method described by the authors can be applied to the more
In recent years there has been a growing interest in thgeneral caséi.e., surface growth with vacancies and over-
study of surface growth. The comprehension of this phenomhangs, the algebraic complications that arise are daunting,
enon plays an important role in understanding and controlas they mention in their pap¢B]. Due to this fact, it is
ling many interesting interface proces$é$ such as colloi- interesting and stimulating to search for alternative ap-
dal and porous aggregat§®—4], vapor depositio{5—7],  proaches to describe the growing process.
crystal growth, molecular beam epitaxy!BE) [8], etc. In In this paper, we will use a microscopic approach to ob-
the laboratory, these processes can be made to occur in mat@n the Langevin equation for the motion of the surface
different ways and a complete understanding is still notprofile in a growing process. The outline of the rest of this
available. paper is as follows; in Sec. Il A, we describe the procedure to
The formation of interfaces and surfaces is influenced bybtain the LE from elementary rules for the discrete Das
a large number of factors, and it is almost impossible toSarma—Tamborenea growth mod&D—-12 (without diffu-
distinguish all of them. Several studies show that some propsion obtaining the corresponding Edwards-Wilkinspi8]
erties of growing surfaces can be analyzed and described gguation and in Sec. Il B the ballistic deposition model is
simple microscopical rules. Many models can afford to beanalyzed and the corresponding Kardar-Parisi-Zhpt#
elementary, because the phenomena being modeled agguation is obtained. Finally, in Sec. lll we give a brief sum-
themselves rather simple, i.e., “island formation” in MBE mary and conclusion of the present investigation.
can be modeled successfully using elementary computer al-
gorithms. _ , Il. DISCRETE MODELS AND LANGEVIN-TYPE
Nevertheless, the classical procedure to describe such pro- EQUATIONS
cesses from the mathematical point of view consists of the
following: (i) a master equation to determine the joint prob- Our procedure to obtain the Langevin equation for the
ability P(h,t) that the surface profile has a configurattoat ~ motion of the surface profile is based on the elementary mi-
time t [whereh=(hy,h,,...,hy) is the set of different sur- croscopic growth rules for the height of a given site. In the
face sites height (i) a stochastic equation of the Langevin following we consider a one-dimensional lattice wihsites
type to determinéh(x; ,t), which describes the heightin  With periodic boundary conditions. The height of a given site
the positionx; at timet; (iii) the discrete model, which de- 1, hi(t,), is a function of the index and timet,. One can
scribes through specific rules the growth of the heightspecify the procedure as follows:
hi(t,) of a given sité in the time stef,,. Given a model for (i) A dummy index] is chosen at random froi integer
the description of a growing process the three mentione@umbers.(ii) The height of a sité at time t,,;=t,+ 7o
methods give the same scaling exponent; the roughening exbere 7, is the elemental time step between two successive
ponenta, the growth exponeng, and the dynamic exponent depositions in any site of the lattices given by
z=alB.
Vvedenskyet al. [9] have reported an analytical deriva- hi(th+1)=R;{hi(tn)}), 1)
tion of the Langevin equatiofLE) of motion for the surface
of a solid growing under typical epitaxial conditions. By us- whereR;({h;(t,)}) gives the growing rules for the height of
ing the master equation for the growing process, they obthe sitei and depends on the value of the dummy inglex
tained the Langevin equation through the evaluation of thé'he way to obtain such dependence is specified by the rules
first moment of the transition rat&/(h,h’). Both equations a priori, and in general can be dependent on the complete set
belong to the same universality class and as a consequenotheights{h;(t,)} at timet, before deposition.
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FIG. 1. A portion of theh;(t) plot. It is easy to see that, due to
the fact thath;(t) is constant between two successive depositions, ' r
hi(tm+ 7i,m— 70) =hi(tm). 4 5

Let us define now the time interval between two succes- FIG. 2. The five graphical representations corresponding to the

sive depositions on siteas rules rq,...,rs, indicating all the possible situations of site
growth. The upper arrows indicate the randomly chosenjsétad
Ti,m= T+ OTj m, 2 the lower arrows indicate the possible sites where the falling par-
ticles relax.

where 7 is the mean time interval between two successive o .
depositions on sité and &7; , is the random deviation from Edwards-Wilkinsori13] equation from the elementary relax-
the mean value. With this consideration we can write Eq. ation mechanisms of the Das Sarma-Tambore(izaT)

(1) for time t+ 7, , as model (without diffusion. Before proceeding to define the
’ elementary rules, let us define the height differeriebe-
hi(t+ 7 ) =R;({hi(t+ 71, n— 70)}), (3 tween two sitek and| at timet+ 7, ,— 7o as
wheret=t, is the time of the previous depositigeee Fig. HE=hy(t+ 7 n— 7o) — hy(t+ 75 n— 7). 4
1). ’ '

In order to illustrate the derivation of the LE from the By expandingH in a Taylor series aboutand retaining the
growth rules given in Eq(3), in the next section we will first term, we obtain
obtain the rules for two well-known growth modeld) the K
Das Sarma—Tamborenea modeisthout diffusion and(2) Hi'=he() =h (1) +O(7; h — 70), ®
the ballistic depositiofil] and consequently the correspond- \yhich is an approximation that will be used throughout this
ing Langevin equations. paper.
Now, we have to derive explicitly the rules given in Eq.
A. Das Sarma-Tamborenea model(without diffusion ) (3) for the DST model. The growing rules for the sit¢see
The first nonequilibrium growth models including deposi- F19- 2 can be expressed as conditionals in the following
tion, relaxation, and surface diffusion were introduced byWay:
Family [10], Wolf and Villain [11], Das Sarma and Tambo-
renea[12], etc., in order to mimic real growth processes. In
this subsection we apply our procedure to obtain thewhere the elementary rules,...rs can be written as

hi(t+ 7 ) =hj(t)+ry+ro+ra+ry+rs, (6)

a if j=i and H;'=0 and H{"'=0
1710 if j#i or H'<0 or H*!>0, @

[a if j=i+1 and H{"'>0 and H{i{=0 g
2210 if j#i+1 or HI*'<0 or HI*2<0, ®

_[a2 if j=i+1 and H;"'>0 and Hjii<0 o
7)o if j#i+1 or Hi*'<0 or Hi*2<o, ©

‘a if j=i—1 and H!Z2=0 and H!"'>0
r4_

“|o if j#i-1 or HIZ2<0 or H! <o, (10
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_fa/2 if j=i-1 and H{Z3>0 and H{ '>0 "
's=lo if j#i-1 or HI“l<0 or HI"!<0, (3
andh;(t+ 7; ,— 70) = h;(t) was usedsee Fig. 1L The equivalent analytic expression of K@) is given by
hi(t+ 7 ) =hi()+a[ 8 j0(H] ™D O(HT ™) + 841 0* (HITH OHITD + 3844, 6% (HITH 0% (HIT)
+ 81 0(HI "D 0* (H™H 381, 6* (H2) 0* (H )] (12
|
whered(x) is the step function and* (x)=1— 6(—x). The (X)W + 7 4 1 (X)Wi 4 11 75— 1(Xj)W; ¢
products in each terms of E(L2) are the analytic expression Ns= = . (29
of the corresponding conditionals given in E¢g-11). The
factor 3 in the third and fifth terms of Eq(12) is the prob-  gng
ability that a particle deposits on sitewhen the dummy
random indexj takes the valué+1 ori—1, respectively 7 (X)W + 7ic 1 (X DWW 11+ 71X 1)Wi ¢
(see ruleg; andrg in Fig. 2. Nd= - .
In order to compare the results of this subsection with the (25)

results of Ref[9] let us write Eq.(3) as

hi(t+ 7 n)=hi(t) +a(d Wi+ &+ 1jWi 1+ 5 -1,Wi—1),

(13)
where
wi=0(H"He(H Y, (14)
Wiy =05 (H "D OH[ T + 360 (H T hHe* (H] D),
(15)
and
Wi_1=0* (H{"HO(H“D) + 3 6% (H] "1 6* (H]73).
(16)

Developing hj(t+7; ,) in a Taylor series and retaining
the first two terms, Eq(8) can be written as

dh;(t)
dt

Tin=a(d Wi+ iy 1jWis1+6-1jWi—1). (17)

Using the results of Appendix A for the development in a

Taylor series of the Kronecker symbols,

S j= 1+ (X)) + 7 (), (18
Sir1j=1+ 71X+ i 1(Xi+1), (19
Oi—1j= L1+ i 1(X)) + 7i-1(Xi—1) (20)
and the expression af, , given in Eq.(2), we obtain
dh(t) a
T:;(Wi+Wi+1+Wi—1)+ 7. (21)
The sum of the remainder termscan be written as
=10t 75t 74, (22)
where
0= — % @ (23

The first term on the right-hand side of EQ1) is equal
to the first transition moment given in E5) in Ref. [9].

Finally, by using of the results given in Appendix B and
retaining the first few terms, we can write

ah(x; ,t) azh(xi 1)
(9t - + 1% 07—)(|2 + 7], (26)
where
F=- (27
and
2a3A,;
v=—01 (28

This is the well-known Edwards-Wilkinson equatifts].

B. Ballistic deposition

This model is defined by the following rules, shown
graphically in Fig. 3:

Fi+r,+ra+r+rg
hi(t+ 7,0 =hi(t)+ W . (29
where
_[a it j=i and H{_;=0 and Hj ;>0
'"Zlo if j#i or H_,<0 or H <0,
(30
C[HITYif j=i and H{T'=0 and H{’{=0
2210 if j#i or H"'<0 or Hi*l<o,
(30
_[HIT* it j=i and H{"'>0 and H{_;>0
=)0 if j#i or Hi*'<0 or Hi_,<0,

(32)
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FIG. 3. (&) Growth rules corresponding to Eq80), (31), (32),
(33), and(34). (b) Growth rules corresponding to situations of mul-

tiple neighborgtwo and threg

_[HTt if j=i and H{*'=0 and H{ ;=0
=lo if j#i or Hi*l<0 or Hi;l<o,
(33)
C[HITt if j=i and H{7'>0 and Hj,;=0
's=lo if j#i or HI!'<0 or H <0,
(34)
and
W= 0(H{_1)8(H{ 1)+ 0(H{_1) o(H{ D)
+0*(H " Ha(H]_ )+ o(H{ " hHe(H D
+0*(H"He(H], ) (35)

is a normalization factor that takes into account the situation

of multiple neighbors as shown in Fig(l8. Again in Eq.

(29 hi(t+ 7 n— 70)=h;(t) was used. In order to separate

the deterministic and the stochastic parts of E29) let us
write

(W +wy+ws)

hi(t+ 7 0) =hi(t)+ 6 —w (36)

where
wy=ad(H_;)0(H}, ), (37)

wo=H{THO(HTH O(H{ D) + 6* (HTH a(H] ),
(39)

and

wa=H{"H(O(H{ " O(H] 1) + 6* (H " O(H], 1)
(39)

Developing hj(t+7; ,) in a Taylor series and retaining
the first two terms, Eq(36) can be written as

dh;(t)
dt

(W1 +Wy+Ws)
W

Ti,m—

i (40)
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Expanding the Kronecker symbol as in Appendix A and
7.m as in Eq.(2), Eq. (18) can be written as

dhi(t) 1 (w;+w,+ws)
dt W

] (41)

and » as in the previous subsection is the sum of the remain-
der terms:

7=+ Nst 14, (42)
where
_ dhl(t) 5Ti,n
=T g0 (43
~ (X)) (W +wWp+Ws)
Ne= W . (44)
and
(X)) (W, +Wo+W
ﬂd:nl( i) (Wq 2 3)‘ (45)

Wt

Finally using the results of Appendix B the Kardar-Parisi-
Zhang equation is

ah(x;,t) a?h(x; ,t) ah(x;,1)\2
5 =F+v pY: +A % +7, (46)
where
F= a 4
=3, (47)
1—(5/6)aA,]a?
,— 1 (50aka” 49
37
and
a’A,
= . (49
T

In EqQ. (46) the nonlinear term appears as the characteristic
of the ballistic deposition model as expected.

IIl. GENERALIZATIONS AND CONCLUSIONS

The possible generalizations of the above method are the
inclusion of different rules for deposition, diffusion, etc., and
the generalization to higher dimensions and to lattices with
other symmetries. In conclusion, this method of construction
of the Langevin equations shows that discrete models are
completely equivalent to the master equation approach and
give the same stochastic Langevin equations. It is not just a
new "representation” of the surface growth phenomena but
a more powerful tool for solving models with vacancies and
overhangs in a relatively simple way avoiding the algebraic
complications arising in the master equation approach.
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Now the height differences can be written as

APPENDIX A
i+1_ ) _ )
In order to separate the deterministic and the stochastic Him " =h(xi=1, ) =h(xi., 1) (B2)
parts let us write the Kronecker symbgl; analytically as and
01, = 00 = X)) 6(=Xi+xy), (AL) HI2=h(X;22.0) — (X2 1.1). (83)

wherex;=ia andx;=ja. This way of writing &; ; allows  Finally, developing in a Taylor series all heights abwit is

one to separate the deterministic and the stochastic parts ¥sy to write the height differences of the previous equation
approximating the step functions by an analytic function agg

in Ref.[9]. Expanding both step functions in a Taylor series

it is easy to find h(Xj+1,t)—h(X;,t)=*Dy1+D3, (B4)
6(x;—x;)=0(x;))+D", (A2) and
O(—Xi+%)=0(—x)+D", (A3) h(Xit21t)_h(Xi:1!t):i(Dl,Z_D1,1)+(D2,2_D2,1)(!BS)
where where
= (=x)" &”G(tx)‘ Z (ka)2tl g2ntip
D= : (A4) _ v (k&) T h(x, ) _
ai=1 (N)! ox" |x:ixi D1k ngl @n+ D)l a1 for k=1,2
(B6)
Then Eq.(Al) can be written as
and

8i,j= 0(x) 0(—xi) + 7i(x)), (A5) )

D, =S (ka)?" 9°"h(x; ,t)
=R T TR

where for k=1,2. (B7)

7i(X))=0(x;)D"+6(—x)D"+D D", (AB) Using the above developments we proceed to find the

. ) ) ) Langevin equations of the discrete models.
Developing again both step functions in E¢&2) and (A3)
about zero we have 1. Das Sarma-Tamborenea model(without diffusion)

6(=x)=1+Dg , (A7) Let us approximate the step functions by analytic func-

tions as in Ref[9] and, expanding each one in a Taylor

where series, we easily find
LG (EX)" (=) Wi =1+2A;D2+O(AD), (B8)
D5=ni1 X . (A8)
- ' x=0 Wi1=A1(Dq 1+ D, 1)+ O(A), (BY)
Finally, introducing Eq(A7) in Eq. (A5) and
0;,j= 1+ 7i(x) + 7i(X)), (A9) W _1=A;(— D11+ D, +O(A?), (B10)
where whereA; is the second coefficient of the development and
B . . only the termsO(A;) are retained. The developments of the
7i(X;)=Dg +Dg +Dy Dy . (A10)  height differences given in Appendix A were also used.
Finally, collecting together the above results one can be writ-
The generalization of EqA9) is straightforward ten
Oi+b,j= 1+ i+p(Xi+p) T 71 +p(Xj) (A11) Wi+ Wi +W_;=1+4A;D,,+0(A]), (B1)

for any b and the explicit expressions are obtained after rewhich is the deterministic part of the Langevin equation cor-
placing everywhere the indaxby (i =b). responding to the Das Sarma—Tamborenea model.
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2. Ballistic deposition
Wl + W2 + W3 - a+

aA; 2 2
In the same way that we proceeded in the previous sub- 1= T) 2D2,1t3A1D1+O(AD).
section the three terms of the numerator of the deterministic (B16)
part of the ballistic deposition model are
In the same way the denominator is
w;=a(1—2A;D, )+ O(A?), (B12

W=3+2A,D,,+O(A?). B16
Wy=D1 1+ Dy 14 2A(Dy 1+ D, )2+ O(A2), (B13) 1Pzt OAY (810

Expanding IW in a geometric series we finally obtain

and
- _ _ 2 2 1 1
W3= D1’1+ D2’1+ 2A1( D1,1+ D2,1) + O(Al)y(B:LA) W — § [1_ %A1D2,1+ O(A%)] (Bl?)
where again only the tern®S(A;) are retained and the de-
velopment of the height differences given in Appendix A
was also used. Let Wi twotws  a . 5aA oD L AD? 4 O(A2
(=Dy1+Dyp)?=D7,+0(a°% (B19) w 3 ° A (1)1 )
’ B18

in the above results. Then the numerator of the deterministic
part of the Langevin equation for the ballistic depositionwhich is the deterministic part of the ballistic deposition

model can be written as model.
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